Table of contents
Given problem
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The combinations themselves must be sorted in ascending order.
- CombinationA > CombinationB iff (a1 > b1) OR (a1 = b1 AND a2 > b2) OR … (a1 = b1 AND a2 = b2 AND … ai = bi AND ai+1 > bi+1)
- The solution set must not contain duplicate combinations.
For example:
Given candidate set 2,3,6,7 and target 7, and a solution set is:
[2, 2, 3]
[7]
Using Backtracking algorithm
public static List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
combinationSum(candidates, target, 0, res, new ArrayList<>(), 0);
return res;
}
public static void combinationSum(int[] candidates, int target, int sum, List<List<Integer>> res, List<Integer> values, int idx) {
if (sum > target) {
return;
}
if (sum == target) {
res.add(new ArrayList<>(values));
return;
}
for (int i = idx; i < candidates.length; ++i) {
values.add(candidates[i]);
combinationSum(candidates, target, sum + candidates[i], res, values, i);
values.remove(values.size() - 1);
}
}
The complexity of this solution:
- Time complexity: O(2^n)
- Space complexity: O(2^n)
Using Unbounded Knapsack version
The idea of this solution is:
- At each element, we can have two cases: add it into our array or not.
- The condition to stop is our sum of elements is equal to the target.
public static List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
combinationSum(candidates, target, 0, candidates.length, res, new ArrayList<>());
return res;
}
public static void combinationSum(int[] candidates, int target, int i, int j, List<List<Integer>> res, List<Integer> values){
if(i >= j || target < 0) return;
if(target == 0){
res.add(new ArrayList<>(values));
return;
}
values.add(candidates[i]);
combinationSum(candidates, target - candidates[i], i, j, res, values); //include item
values.remove(values.size() - 1);
combinationSum(candidates, target, i + 1, j, res, values); //dont include item
}
Wrapping up
- Understanding about the structure of backtracking algorithm.
Refer: