Table of contents
Given problem
Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: [1,2,2]
Output:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
Using Backtracking algorithm
-
The easiest way is that before we push an array into a result array, we will check whether it can be duplicated the other array in result array or not.
public List<List<Integer>> subsetsWithDup(int[] nums) { List<List<Integer>> res = new ArrayList<>(); Arrays.sort(nums); subsetsWithDup(nums, res, new ArrayList<>(), 0); return res; } public void subsetsWithDup(int[] nums, List<List<Integer>> res, List<Integer> values, int indx) { if (!res.contains(values)) { res.add(new ArrayList<>(values)); } for (int i = indx; i < nums.length; ++i) { values.add(nums[i]); subsetsWithDup(nums, res, values, i + 1); values.remove(values.size() - 1); } }
-
Compare elements in the loop
public List<List<Integer>> subsetsWithDup(int[] nums) { List<List<Integer>> res = new ArrayList<>(); Arrays.sort(nums); subsetsWithDup(nums, res, new ArrayList<>(), 0); return res; } public void subsetsWithDup(int[] nums, List<List<Integer>> res, List<Integer> values, int indx) { res.add(new ArrayList<>(values)); for (int i = indx; i < nums.length; ++i) { if (i != indx && nums[i] == nums[i - 1]) { // compare the current element and previous element continue; } values.add(nums[i]); subsetsWithDup(nums, res, values, i + 1); values.remove(values.size() - 1); } }
The complexity of this problem:
- Time complexity: O(n * 2^n)
- Space complexity: O(n * 2^n)
Wrapping up
- Understanding basic about the structure of backtracking problem.
Refer: