Table of contents
- Given problem
- Using brute force algorithm
- Using Sliding Window technique
- Using Deque solution
- Wrapping up
Given problem
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Example:
Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
Using brute force algorithm
Below is the source code of using brute force algorithm.
public static int[] maxSlidingWindow(int[] nums, int k) {
int[] maxElems = new int[nums.length - k + 1];
int count = 0;
for (int i = 0; i < nums.length - k + 1; ++i) {
int max = Integer.MIN_VALUE;
for (int j = i; j < i + k; ++j) {
max = Math.max(max, nums[j]);
}
maxElems[count++] = max;
}
return maxElems;
}
The complelxity of this soluttion:
- Time complelxity: O(n * k)
- Space complexity: O(n - k + 1)
Using Sliding Window technique
Because we always maintains the maximum element of subarray with size = k, regardless of removing or adding a new element, so we will use max heap data structure to deal with it. Then combine between sliding window technique and priority queue, we will have the below code.
public int[] maxSlidingWindow(int[] nums, int k) {
int windowStart = 0;
int max = Integer.MIN_VALUE;
int[] maxElems = new int[nums.length - k + 1];
int count = 0;
PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(nums.length, Collections.reverseOrder());
for (int windowEnd = 0; windowEnd < nums.length; ++windowEnd) {
int item = nums[windowEnd];
int steps = windowEnd - windowStart + 1;
priorityQueue.add(item);
if (steps <= k) {
max = priorityQueue.peek();
}
if (steps == k) {
maxElems[count++] = max;
// remove the element at windowStart index
priorityQueue.remove(nums[windowStart]);
++windowStart;
}
}
return maxElems;
}
But we still encounter the Time Limit Exceeded error. What is our problem?
We are using the built-in Priority Queue in Java. Then we need to see the definition of remove() method.
public boolean remove(Object o) {
int i = indexOf(o);
if (i == -1) {
return false;
} else {
removeAt(i);
return true;
}
}
private int indexOf(Object o) {
if (o != null) {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++) {
if (o.equals(es[i])) return i;
}
}
return -1;
}
So the time complexity of this solution uses Priority Queue is O(n * k).
Note:
-
With Priority Queue, we can construct it by using.
// contains index of elements PriorityQueue<Integer> queue = new PriorityQueue<>((i1, i2) -> (nums[i1] - nums[i2]));
Using Deque solution
To improve the performance of solution that uses Sliding Window technique, we will deque to do it.
- When we increment the elements of deque, we need to check whether this subarray that satisfies size = k or not. If not, we will remove the elements at the head of deque.
- Each element will be compared with the elements at the end of deque, if it is greater than deque’s elements, we will remove elements at the end of deque.
public static int[] maxSlidingWindow(int[] nums, int k) {
int len = nums.length;
if (len == 0 || k == 0) {
return new int[0];
}
int[] result = new int[len - k + 1];
Deque<Integer> deque = new ArrayDeque<>();
for (int i = 0; i < len; ++i) {
// remove indices that are out of bound - subarray with size = k
while (deque.size() > 0 && deque.peekFirst() <= i - k) {
deque.pollFirst();
}
// remove indices whose corresponding values are less than nums[i]
while (deque.size() > 0 && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
// add nums[i]
deque.offerLast(i);
if (i >= k - 1) {
result[i - k + 1] = nums[deque.peekFirst()];
}
}
return result;
}
The complexity of this solution:
- Time complexity: O(n)
- Space complexity: O(k)
Wrapping up
- Understanding about the structure of sliding window technique and uses deque data structure.
Refer: